Team Torrent (Group 25

CISC 322/326 Assignment 3: Presentation
Kodi: Enhancement Proposal

Aselstyne, Alex (alex.aselstyne@queensu.ca) Lead.
Dinari, Daniel (20dd29@queensu.ca) Pres.

Nagel, Jake (20jn29@queensu.ca)

Peterson, Jack (21jrpl0@queensu.ca) Pres.

Pleava, Ryan (20rcp5@qgueensu.ca)
YouTube Link: https://youtu.be/QmdF1bCxjPk

mailto:alex.aselstyne@queensu.ca
mailto:20dd29@queensu.ca
mailto:20jn29@queensu.ca
mailto:21jrp10@queensu.ca
mailto:20rcp5@queensu.ca
https://youtu.be/QmdF1bCxjPk

Introduction to our Project

Primary Topics:
1) Enhancement Proposal
2) Functional and Non-Functional Requirements
3) Current State of the System
4) Implementation Plans
5) SAAM Analysis
6) Use Cases
7) Testing Plans
8) Introduced Risks
9) Conclusion

Kodi Enhancement
Proposal: Subtitle System

e Automatic and user-shared subtitles.

e Can automatically generate subtitles for videos
using a machine learning subsystem.

* Users can upload saved subtitles to a remote
server.

e Subtitles will be selected from the same menu used
for local subtitles.

Functional Requirements

Ul: A friendly user
interface for easy
activation and interaction.

J

Subtitle Generator: A ML
model trained to generate
subtitles from audio.

J

System Storage: Capacity
to store, edit, download
and reuse generated
subtitles.

System Integration:
Integration with Kodi's
current architecture,

allowing users to activate

subtitle generation easily.

Non-Functional Requirements

Performance: Fast subtitle generation with low latency
Scalability: Handle an increasing number of users with subtitle generation requests

Reliability: Accuracy in subtitle generation across genres and audio qualities

Security: Measures to protect user data, especially if any personalization is involved

Maintainability: Easy updates and improvements without disrupting overall functionality

L]

Current State of the System

Currently, Kodi subtitles can be hard-coded in a file, or have a reference subtitle
files such as an SRT file.

Kodi has a plug in called "Open Subtitles" that has access to a database of 7
million subtitles for popular TV and movies.

Both of these options have problems, finding media with built-in subtitles is
challenging, and subtitles for an unpopular or local video most likely do not exist.

Implementation Plans

Local File Manager

A

Addon Manager

Player core

GUI Manager
LibraryManager

Request Manager

v’\:{

Subtitle Manager

SAAM Analysis

Stakeholders

Primary NFRs

NFR

Implementation 1 (Local)

Implementation 2 (Cloud)

Users

Kodi Developers

Kodi Foundation

Performance — Users want subtitles to be generated as quickly as
possible.

Cost — The cost to the user should be as low as possible, if not zero,
since Kodi is currently free software.

Accuracy — The subtitles generated need to be as accurate as possible
to be useful to the user.

Scalability — Currently, Kodi is highly scalable because it is all locally
computed on the user’s machine. Developers would prefer to
keep it that way to keep complexity down.

Maintainability — Developers want the software to be as easy to
maintain as possible.

Testability — Ease of testing is desirable for developers so they produce
bug-free code.

Cost — The Kodi Foundation is funded by donations from users, and as
such wants to keep their costs very low.

Maintainability — Keeping the software maintainable will help attract
developers from the open-source community.

Security — Security is a high priority for the Kodi Foundation, both to
maintain their image and integrity as well as protect their
assets.

Performance

Accuracy

Scalability

Maintainability

Security

Highly dependent on the
characteristics of the end user’s
machine. Faster computers will
produce subtitles much faster.
Free for both parties, aside from
development time (which does
not differ between the two
implementations).

Different models may need to be
selected for slower machines,
which produce less accurate
results.

High. There is no change
compared to current Kodi
versions.

Somewhat diminished, as the
library used for subtitle
generation will have to be
periodically updated.
Unchanged. No additional data is
sent from the user to Kodi.

Quick results can consistently be
computed regardless of the user’s
machine. Internet speed is the only
factor, as audio needs to be uploaded.
One party will have to pay for server
time to generate the subtitles. Either
the Kodi Foundation will absorb it, or
it will be passed down to the end user
as a “premium’ option.

Likely very high, assuming high
performance cloud architecture is
used.

Limited. Additional server resources
will have to be purchased if more
users begin using the service.

Greatly diminished. Not only will the
library need to be updated, but server
infrastructure must be maintained and
monitored.

Potential risks. Audio files sent to the
subtitle generation server may contain
malicious code.

» Sequence diagram of use case 1 —a user uploads subtitles

U Se Ca Se 1 to a central server for user sharing.

Use Case 1 Sequence Diagram

GUI Manager

Reques! vdeao
[4]
-

.

VideoDB. Open()

Return video ksl

Hequest sulbbihe

dala of a vdeo
*-- -

e

RequesiSulbbitheF de()

_ Upload/edit dialog basx
{-.

Select upload
= SubUploadF romPath(path)

-
F

Upload compheie

Library Manager

LocalFileManager
{clhient layer)

sellwrectony()

Return file sl

s&lSubltleDalal)

Return flepath

kodi_nebtwork->gel_ip_address

Upload Comphie

Hequesl Manager

PUT fsubliies/calegoneshnded_name

Web response

Remole Kodi

Subtitle Library

* a3 user automatically generates subtitles for a video using

Use Case 2 the built-in ML subtitle generator.

Sequence Diagrams for Use Case 2

GUI Manager

Heques! video
]
L VideoDB. Open()

"

Return vadeo st

Aulo-gener ale
Subtihes
of sekecled wdeao
'-! -

e

Library Manager

LocalFileManager
{client layer)

GetDirectony()

Heturn fie ksl

AutoGeneraleSubbthe s vdea)

Extract audo dala

Return awdwn dala

1 Creale(subbtkeDala)
_‘.

Fie crealed

Auto subltkes crealed

Generalor

ML Audio-Sublitle
Generalor

MakeSubltles(audm) ™
b.

Return subtiles

Requirements
definition -
System and
- software design -
Implementation
- and unit testing -
Integration and
system testing -
Functional Testing: N Orerrenend
* Black Box Test (Output Coverage): Compare generated
subs vs transcript -> If accuracy +99% then pass
» Black Box Test (Input Coverage): SQL Injection can't be

esting Plans

performed on search bars Plan:

* White Box Test (Decision Mutation): Decision generation
when no language preference is given -> must show 1. Add new unit tests for subtitle gen component
English subs -> Evaluate functionality

* Integration Test: Compare generated subs vs displayed 2. Run regression tests

-> Validate system integration

. : 3. Tests are automated + report generation
Non-Functional Testing: portg

* performance, reliability, usability, and security

Potential Risks

. . Performance
Security Flaw: Injection Risk: Resource hogsin
Attacks in User-Uploaded .' nogsing
, : during ML subtitle
Subtitle Files

generation

Lessons Learned and
Conclusion

ML Subtitles for Kodi: Proposed ML-driven subtitle
generation for Kodi.

* Cloud Sharing: Users upload/download subtitles on a
central server.

* Architecture Choice: Favored pipe & filter for practical
system integration.

* Dependency Map: Mapped module dependencies for
insights into system integration.

* Efficiency Priority: SAAM analysis supports the first
implementation for seamless integration.

References

Original References
[1] English subtitles. Subtitles. (n.d.). https//www.opensubtitles.org/en/en%20

[1] “About Kodi,” Koditv. [Online]. Available: https//koditv/about/. [Accessed: 22-Oct-2023].

[2] Kodiwiki. [Online]. Available: https//kodi.wiki/view/Architecture#Business Layer. [Accessed: 22-Oct-2023].

[3] “Kodi,” Github.io. [Online]. Available: http:/delftswa. github.io/chapters/kodi/. [Accessed: 22-Oct-2023].

[4] “Kodi Foundation,” Koditv. [Online]. Available: https:/koditv/about/foundation/. [Accessed: 22-Oct-2023].
[5] Kodiwiki. [Online]. Available: https:/kodi.wiki/view/History of Kodi. [Accessed: 22-Oct-2023].

[6] “Pipe and filter,” Berkeley.edu. [Online]. Available: https//patterns.eecs.berkeley.edu/?page id=19. [Accessed: 22-Oct-
2023].

New A3 References
[1] OpenAl, Introducing Whisper, https:/openai.com/research/whisper/ (accessed Dec. 5, 2023).

[2] OpenAl, “Openai/whisper: Robust speech recognition via large-scale weak supervision,” GitHub - Whisper,
https://github.com/openai/whisper (accessed Dec. 5, 2023).

[3] Abdeladim-S, “Abdeladim-S/subsai: B subtitles generation tool (web-UI + CLI + python package) powered by openai’s
whisper and its variants B ,” GitHub, https:/github.com/abdeladim-s/subsai (accessed Dec. 5, 2023).

https://www.opensubtitles.org/en/en%20
https://kodi.tv/about/
https://kodi.wiki/view/Architecture
http://delftswa.github.io/chapters/kodi/
https://kodi.tv/about/foundation/
https://kodi.wiki/view/History_of_Kodi
https://patterns.eecs.berkeley.edu/?page_id=19
https://openai.com/research/whisper/
https://github.com/openai/whisper
https://github.com/abdeladim-s/subsai

	Slide 1: Team Torrent (Group 25)
	Slide 2: Introduction to our Project
	Slide 3: Kodi Enhancement Proposal: Subtitle System
	Slide 4: Functional Requirements
	Slide 5: Non-Functional Requirements
	Slide 6: Current State of the System
	Slide 7: Implementation Plans
	Slide 8: SAAM Analysis
	Slide 9: Use Case 1
	Slide 10: Use Case 1 Sequence Diagram
	Slide 11: Use Case 2
	Slide 12: Sequence Diagrams for Use Case 2
	Slide 13: Testing Plans
	Slide 14: Potential Risks
	Slide 15: Lessons Learned and Conclusion
	Slide 16: References

