
Team Torrent (Group 25) 
CISC 322/326 Assignment 2: Presentation

Kodi: Concrete Architecture Analysis
Aselstyne, Alex (alex.aselstyne@queensu.ca) Lead.

Dinari, Daniel (20dd29@queensu.ca) Pres.

Nagel, Jake (20jn29@queensu.ca)

Peterson, Jack (21jrp10@queensu.ca) Pres.

Pleava, Ryan (20rcp5@queensu.ca)

YouTube Link: https://youtu.be/Ae_2iAKzyM0

mailto:alex.aselstyne@queensu.ca
mailto:20dd29@queensu.ca
mailto:20jn29@queensu.ca
mailto:21jrp10@queensu.ca
mailto:20rcp5@queensu.ca
https://youtu.be/Ae_2iAKzyM0


Introduction to Kodi

• Free and open-source multimedia player.

• Originally developed for the Xbox (2001), initial 
release in 2003.

• Later ported to most popular platforms.

• Disassociated from Xbox in 2014.



Introduction to our Project

• Document Kodi's conceptual architecture abstractly

• 5 Primary Topics

1) Overview of Top Level Concrete Subsystems

2) Derivation Process

3) Describing the Use Cases and Sequence Diagrams

4) Reflection Analysis – Player Core Subsystem

5) Reflection Analysis – High Level Architecture

6) Conclusions



Overview of Top Level Concrete Subsystems



Derivation Process Utilized Understand, a tool for viewing 
repositories.

Started with our original conceptual 
architecture as a starting point.

Mapped files to components, creating 
new components or altering names as 
necessary.

Dug through code to generate new 
sequence diagrams, and for reflection 
analysis.



Use Case 1 • User selecting and 
playing a video



Use Case 1 Sequence Diagram



Use Case 2
• User selects an addon from the available list, installs it, and 

then uses it to play a song from a remote server



Sequence Diagrams for Use Case 2



Reflection Analysis of High Level Architecture



Reflection 
Analysis of 

Player Core

VideoPlayer

AudioPlayer

RetroPlayer



Lessons Learned 
and Conclusion

• Kodi is a highly interconnected system, 
many dependencies.

• Large-scale software will almost never be 
implemented in the exact way it was 
conceptually designed.

• Repository was much larger than 
anticipated, working as a group to 
distribute work was important.

• Kodi is a very large software, likely that 
there are some misunderstands of the 
architecture we didn't catch.

• Lots of dependencies are difficult to figure 
out with only conceptual architecture, due 
to intricacies in the code.

• Kodi is a very versatile and well-designed 
software, it recycles a lot of code and is 
efficient.



References

[1] “About Kodi,” Kodi.tv. [Online]. Available: https://kodi.tv/about/. [Accessed: 22-Oct-
2023].

[2] Kodi.wiki. [Online]. Available: 
https://kodi.wiki/view/Architecture#Business_Layer.[Accessed: 22-Oct-2023].

[3] “Kodi,” Github.io. [Online]. Available: http://delftswa.github.io/chapters/kodi/. [Accessed: 
22-Oct-2023].

[4] “Kodi Foundation,” Kodi.tv. [Online]. Available: https://kodi.tv/about/foundation/. 
[Accessed: 22-Oct-2023].

[5] Kodi.wiki. [Online]. Available: https://kodi.wiki/view/History_of_Kodi. [Accessed: 22-
Oct-2023].

[6] “Pipe and filter,” Berkeley.edu. [Online]. Available: 
https://patterns.eecs.berkeley.edu/?page_id=19. [Accessed: 22-Oct-2023].

https://kodi.tv/about/
https://kodi.wiki/view/Architecture
http://delftswa.github.io/chapters/kodi/
https://kodi.tv/about/foundation/
https://kodi.wiki/view/History_of_Kodi
https://patterns.eecs.berkeley.edu/?page_id=19

	Slide 1: Team Torrent (Group 25) 
	Slide 2: Introduction to Kodi
	Slide 3: Introduction to our Project
	Slide 4: Overview of Top Level Concrete Subsystems
	Slide 5: Derivation Process
	Slide 6: Use Case 1
	Slide 7:  Use Case 1 Sequence Diagram
	Slide 8: Use Case 2
	Slide 9: Sequence Diagrams for Use Case 2
	Slide 10: Reflection Analysis of High Level Architecture 
	Slide 11: Reflection Analysis of Player Core
	Slide 12: Lessons Learned and Conclusion
	Slide 13: References

