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Introduction to Kodi

• Free and open-source multimedia player.

• Originally developed for the Xbox (2001), initial 
release in 2003.

• Later ported to most popular platforms.

• Disassociated from Xbox in 2014.



Introduction to our Project

• Document Kodi's conceptual architecture abstractly

• 5 Primary Topics

1) Overview of Top Level Concrete Subsystems

2) Derivation Process

3) Describing the Use Cases and Sequence Diagrams

4) Reflection Analysis – Player Core Subsystem

5) Reflection Analysis – High Level Architecture

6) Conclusions



Overview of Top Level Concrete Subsystems



Derivation Process Utilized Understand, a tool for viewing 
repositories.

Started with our original conceptual 
architecture as a starting point.

Mapped files to components, creating 
new components or altering names as 
necessary.

Dug through code to generate new 
sequence diagrams, and for reflection 
analysis.



Use Case 1 • User selecting and 
playing a video



Use Case 1 Sequence Diagram



Use Case 2
• User selects an addon from the available list, installs it, and 

then uses it to play a song from a remote server



Sequence Diagrams for Use Case 2



Reflection Analysis of High Level Architecture



Reflection 
Analysis of 

Player Core

VideoPlayer

AudioPlayer

RetroPlayer



Lessons Learned 
and Conclusion

• Kodi is a highly interconnected system, 
many dependencies.

• Large-scale software will almost never be 
implemented in the exact way it was 
conceptually designed.

• Repository was much larger than 
anticipated, working as a group to 
distribute work was important.

• Kodi is a very large software, likely that 
there are some misunderstands of the 
architecture we didn't catch.

• Lots of dependencies are difficult to figure 
out with only conceptual architecture, due 
to intricacies in the code.

• Kodi is a very versatile and well-designed 
software, it recycles a lot of code and is 
efficient.
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